
KEY POINTS

1. Upper-level recon samples enough depth to capture the full atmosphere’s MSE variance. 
➢ Low-level recon does not →warm core aloft contributes significantly.

2. Estimates of MSE variance/feedbacks are sensitive to spatial distribution of dropsondes.
➢ But they generally agree on the sign and order of magnitude, relative to full domain.

3. A standard number of dropsondes (20-40) can assess MSE variability, provided…
➢ …A wide range of radii is sampled; TC core is approached as closely as safely possible.
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Figure 1: (a) 6-hourly intensity 
evolution for the four TCs. (b-c) 
Simulated flight patterns on a 

map of column-integrated MSE. 
(b) shows the versions of the 

patterns with smaller outer radii, 
while (c) shows larger versions.

Figure 2: (a) Composite radial profiles of MSE anomaly (from 0-500 km 
radial mean) for the Full, G4, and P3 columns. (b) MSE variance as a function 

of intensity for all simulations, time steps, and column depths.

Figure 3: (a) MSE variance, (b) longwave feedback, and (c) surface flux feedback for each simulation, comparing 
the full domain value to flight pattern estimates. MSE is integrated in the P3 column in Alpha, and G4 in all others.

Figure 4: (a) Transect radial profiles of G4 column MSE. (b) MSE variance 
as a function of intensity for transects in each simulation and time step.
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Cloud-radiation and surface flux feedbacks affect TC development1-4. We can quantify these if we know how the column-integrated 
moist static energy (MSE) varies. Can dropsondes from aircraft reconnaissance give us this knowledge, despite their limited coverage?
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• 4 TCs simulated over 3 days in a cloud-resolving model5

(SAM); 3 undergo RI after spontaneous genesis:
1. CTRL: Baseline
2. LARGE: Larger TC than CTRL
3. SMALL: Smaller TC than CTRL
4. WEAK: Maximum intensity of 33.6 m s-1

• First, we identify the necessary column depth for these 
calculations, integrating MSE through 3 columns:
1. Full: Surface to 17 hPa (top of model)
2. G4: Surface to 200 hPa (upper-level recon)
3. P3: Surface to 680 hPa (low-level recon)

• G4 resolves full column’s MSE spatial variability well; P3 
does not, capturing ~40% of MSE variance.

• Main contributor to MSE variance is water vapor, but warm 
core temperature anomalies aloft are non-negligible.

• NW → SE line through the TC center. Reference transect 
includes all 511 grid points along this line.

• Need inner-core sampling to fully capture MSE 
variability, but few data points needed at outer radii.

• Higher estimates of MSE variance, longwave, and surface flux feedbacks for: more 
intense/larger TCs (usually), larger outer pattern radius, more dropsondes at inner radii.

• Disagreement on sign of shortwave feedback, but this is much weaker.
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Filled vs. 
unfilled 
symbols 30 Circ samples 

~150 km radius 
more, while Alpha 
includes eyewall

Develop patterns of grid points resembling recon 
flights. Calculate MSE variance and feedbacks from 

these, and compare to what we get w/ the full domain:
1. 36 Star: 36 “dropsondes” in a star shape offset slightly NW
2. 24 Star: 1 less dropsonde in each radial leg
3. 30 Circ: Symmetric; 6 additional sondes near 150 km radius
4. Alpha: Intercepts eye/eyewall, MSE integrated in P3 column

Full domain: > 260,000 grid points

20°N f-plane; uniform thermal forcing
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• Positive feedbacks occur when anomalies of MSE and 
radiative/surface enthalpy flux have matching signs
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