Simulating Dropsondes to Assess Moist Static Energy Variability in Tropical Cyclones
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Cloud-radiation and surface flux feedbacks affect TC development'-4. We can quantify these if we know how the column-integrated
moist static energy (MSE) varies. Can dropsondes from aircraft reconnaissance give us this knowledge, despite their limited coverage?

EXPERIMENTAL DESIGN

4 TCs simulated over 3 days in a cloud-resolving model>

(SAM); 3 undergo Rl after spontaneous genesis:
1. CTRL: Baseline

2. LARGE: Larger TC than CTRL

3. SMALL: Smaller TC than CTRL

4. WEAK: Maximum intensity of 33.6 m s’

* First, we identity the necessary column depth tor these

calculations, integrating MSE through 3 columns:
1. Full: Surface to 17 hPa (top of model)

2. GA4: Surface to 200 hPa (upper-level recon)

3. P3: Surface to 680 hPa (low-level recon)
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RADIAL TRANSECTS

SENSITIVITY TO COLUMN DEPTH

G4 resolves full column’s MSE spatial variability well; P3 « NW - SE line through the TC center. Reterence transect
does not, capturing ~40% ot MSE variance. includes all 511 grid points along this line.
* Main contributor to MSE variance is water vapor, but warm | * Need inner-core sampling to tully capture MSE
core temperature anomalies aloft are non-negligible. variability, but few data points needed at outer radii.
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Figure 2: (a) Composite radial profiles of MSE anomaly (from 0-500 km

radial mean) for the Full, G4, and P3 columns. (b) MSE variance as a function
of intensity for all simulations, time steps, and column depths.

Figure 4: (a) Transect radial profiles of G4 column MSE. (b) MSE variance
as a function of intensity for transects in each simulation and time step.

KEY POINTS

1. Upper-level recon samples enough depth to capture the full atmosphere’s MSE variance.
> Low-level recon does not = warm core aloft contributes significantly.

2. Estimates of MSE variance/feedbacks are sensitive to spatial distribution of dropsondes.
> But they generally agree on the sign and order of magnitude, relative to full domain.

3. Astandard number of dropsondes (20-40) can assess MSE variability, provided...

> ...Awide range of radii is sampled; TC core is approached as closely as safely possible.

Develop patterns of grid points resembling recon
flights. Calculate MSE variance and feedbacks from

these, and compare to what we get w/ the full domain:
1. 36 Star: 36 “dropsondes” in a star shape offset slightly NW
2. 24 Star: 1 less dropsonde in each radial leg
3. 30 Circ: Symmetric; 6 additional sondes near 150 km radius
4. Alpha: Intercepts eye/eyewall, MSE integrated in P3 column
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Positive feedbacks occur when anomalies of MSE and
radiative/surface enthalpy flux have matching signs
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Figure 3: (a) MSE variance, (b) longwave feedback, and (c) surface flux feedback for each simulation, comparing
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